

Massachusetts Institute of Technology
Lincoln Laboratory

Making Network Intrusion Detection Work with [Psec

C.D. McLain
A. Studer
R.P. Lippmann
Group 62

Technical Report 1121

11 May 2007

Approved for public release; distribution is unlimited.

Lexington Massachusetts

ABSTRACT

Network-based intrusion detection systems (NIDSs) are one component of a
comprehensive network security solution. The use of IPsec, which encrypts net-
work traffic, renders network intrusion detection virtually useless unless traffic is
decrypted at network gateways. One alternative to NIDSs, host-based intrusion
detection systems (HIDSs), provides some of the functionality of NIDSs but with
limitations. HIDSs cannot perform a network-wide analysis and can be subverted if
a host is compromised. We propose an approach to intrusion detection that com-
bines HIDS, NIDS, and a version of IPsec that encrypts the header and the body
of IP packets separately. We refer to the latter generically as Two-Key IPsec. We
show that all of the network events currently detectable by the Snort NIDS on un-
encrypted network traffic are also detectable on encrypted network traffic using this
approach. The NIDS detects network-level events that HIDSs have trouble detecting
and HIDSs detect application-level events that can’t be detected by the NIDS.

il

ACKNOWLEDGMENTS

This work was sponsored by David Kenyon of the Air Force Electronic Systems
Command, GIG Network Architecture Office.

TABLE OF CONTENTS

Abstract

Acknowledgments

List of Illustrations

List of Tables

INTRODUCTION

RELATED WORK

HOW SNORT RULES EXAMINE PACKETS
TAXONOMY OF SNORT RULES BY EVENT TYPE
ANALYSIS OF SNORT RULES

5.1 Portion of the Packet Examined by Event Type
5.2 Whether Signatures Need to Search the Entire Packet
PROPOSED SOLUTION

DISCUSSION

CONCLUSIONS AND FUTURE WORK

Glossary

References

vii

Page
i

ix

ix

1l
11
14
19

21

23

27

Figure
No.

Table
No.

LIST OF ILLUSTRATIONS

Traditional and Two-Key IPsec in Transport & Tunnel
Modes

Taxonomy of Events of Interest to IDSs

Histogram of How Many Rules in Each of 3 Categories
Examine Each Byte in a Packet

Histogram of the 104 Episodic DoS TCP Rules
NIDS & HIDS Coverage of the Taxonomy

LIST OF TABLES

Taxonomy Statistics

X

Page

12
14
20

Page

11

1. INTRODUCTION

Computer attacks and misuse result in significant costs in downtime and lost or stolen in-
formation. To prevent or reduce the impact of these undesirable events, administrators often set
up an intrusion detection system (IDS) to monitor activities and generate alerts or actions. IDSs
use two methods to detect suspicious behavior: pattern matching and anomaly detection. Pattern
matching IDSs use signatures or rules that describe undesirable events and perform some action
when the pattern matches an event or data. They are best at detecting attacks which have a
known signature. Anomaly detection IDSs look for behavior that deviates from “normal” behavior.
Normal behavior is defined by selected characteristics of a baseline data set on which the anomaly
detection system has been trained. Anomaly detection IDSs are designed to detect general system
misuse and attacks for which no signature exists, often called zero-day attacks.

Pattern matching and signature detection IDSs are commonly used to detect and respond
to misuse. Such systems, however, cannot detect that a third party is intercepting messages, or
protect traffic after it exits the local network. To prevent eavesdropping and tampering at the
network level, IPsec (Internet Protocol Security) [14] is used to encrypt and authenticate traffic
as it flows across a network. The IPsec Encapsulating Security Payload (ESP) [13] protocol with
authentication prevents unauthorized parties from reading or modifying the contents of packets.

[Psec can be used in either of two modes: transport or tunnel. With transport mode IPsec,
the IP payload is encrypted and the IP header is left unencrypted. If transport mode IPsec is
used, other parties on the network can see the source and destination addresses of packets but no
other information. With tunnel mode IPsec, the entire packet is encrypted and a new IP header is
added to the packet. If tunnel mode IPsec is used, the original source and destination addresses of
the packet are hidden as well, providing network monitors with even less information. The secrecy
provided by encrypting traffic with IPsec acts as a dual-edged sword. Malicious parties can no
longer eavesdrop on network traffic. However, encryption hides the majority of traffic content from
any intrusion detection system monitoring traffic in the network.

Administrators can install IDSs on the end hosts and use a Host-based Intrusion Detection
System (HIDS). However, HIDSs are limited. Even with collaboration among HIDSs, HIDSs can
miss network-level events, such as scans of unassigned IP addresses. In addition, a successful
attacker can disable a HIDS. A Network-based Intrusion Detection System (NIDS) monitors traffic
and detects suspicious events. NIDSs detect network-level events, but require more than the source
and destination addresses of a packet to detect events and they often examine packet contents.
This information is hidden when traffic is encrypted with IPsec.

Several researchers have proposed selective encryption schemes for providing network-based
services, such as packet-filtering firewalls, access to data encrypted by IPsec [10,12,31]. In this
report, we investigate the efficacy of using selective encryption with IPsec combined with HIDS to
restore the functionality of Snort [19], a widely used NIDS. This approach uses selective encryp-
tion on an IP packet by breaking the packet into multiple encryption zones. This technique was
proposed in 1999, largely for improving network performance, independently as Multilayer IPsec
(ML-IPsec [31]) and Layered Encryption Security (LES [10]). Each encryption zone is assigned a

cryptographic key and a portion of the IP packet over which that key is used for encryption and
decryption. Selective encryption enables a well-designed NIDS to detect network-wide events while
HIDSs detect more application-specific events.

For this investigation, we restrict the number of encryption zones to two: one for the header
information at the beginning of the packet and the other for the remainder of the packet, containing
the application data. End hosts have access to the entire packet. The network services, Snort in
this case, have access to the header information only. In the remainder of the report, this two-
encryption-zone strategy will be referred to as “Two-Key IPsec,” since we are interested in the
impact of using this encryption strategy independent of a particular implementation.

Traditional IPsec: Transport Mode

IP Header | ESP Header w\\w\\\ N X fﬁf..

~
Generated Using Ki
S

Tunnel Mode
\%\ % N\
New IP | ESP Head ESP
Hee:der i % K\ \ Auth
Two—-Key IPsec: Transport Mode

IP Header |ESP Header P277%

ESP
Auth

Generated Using Ki
Tunnel Mode M

Encrypted Under Ki N’Bytes
Encrypted Under K2

N Bytes

New IP ESP Header
Header

Figure 1. Traditional and Two-Key IPsec in Transport & Tunnel Modes

Figure 1 illustrates the difference between traditional and Two-Key IPsec. In the top two
packet diagrams, the hashed area represents the data that traditional IPsec encrypts using a single
key, Ki. Only the endpoints of the connection know K. In the bottom two packet diagrams of
Figure 1, the two hashed areas show the effect of using Two-Key IPsec to encrypt the bytes of the
packet with two separate keys, K and Ks. The first N bytes of the ESP payload are encrypted
with the second key, K>. Note that for IPsec tunnel mode, N’ bytes are encrypted using Ko,
where N' = N + L;p_par and Lip_par is the length of the encapsulated IP header. Ks is shared
among the end hosts and the network-based service. K is used to encrypt the remainder of the
ESP payload and, as with traditional IPsec, is known only to the endpoints. In both cases, IPsec
adds the ESP header and appends an integrity check value, or authentication data (ESP Auth).
For simplicity, we show the authentication data as being generated for the encrypted portion of
the packet using K. Using any key other than Ky to generate the authentication data prevents

a network-based service from successfully modifying the contents of the packet, effectively giving
any machine having only K read-only access.

If the network-based service is trusted and assumed to be perfectly secure, the end hosts
might as well encrypt the entire packet under a single key that is shared with the network service.
However, Two-Key IPsec follows the principle of least privilege and insures that network services
have access only to necessary information.

This work analyzes Snort to determine which rules require access to only the first bytes in
each packet. We find that Snort requires access to entire packets to detect the majority of attacks.
However, Snort does detect a crucial set of suspicious events by examining the first few packet
bytes. More important, the limited types of events Snort can detect when Two-Key IPsec is used
are those missed by HIDSs. In order to secure both network traffic and systems, we propose the
deployment of NIDSs and HIDSs in conjunction with Two-Key IPsec.

The remainder of this report is organized as follows. In Section 2 we discuss work related to
intrusion detection and encryption of network traffic. Section 3 shows how Snort examines packets
and how we determine which bytes in the packets are required by different Snort rules. Section 4
introduces a taxonomy of the different types of events that Snort detects. In Section 5. we use
this taxonomy to establish meaningful metrics of Snort’s capabilities when different fractions of
bytes in packets are accessible. Section 6 describes how HIDSs, a NIDS, and Two-Key IPsec can be
combined to detect all suspicious events detectable by Snort. We discuss some issues with Two-Key
[Psec in Section 7 and make concluding remarks in Section 8.

2. RELATED WORK

It is widely recognized that the use of IPsec can cause problems for network services such
as firewalls, Performance Enhancing Proxies, and Network Address Translation, as well as NIDSs.
A variety of solutions have been proposed involving decryption, signaling protocols, and packet
modifications [17]. Several commercial products [3,9, 28] co-locate an IPsec endpoint and NIDS
at a network gateway. This solution allows the IDS to operate at the cost of leaving traffic in the
clear within a local network. An attacker that has subverted a host on such a local network has
access to all of the traffic destined for the network, not just traffic destined for the subverted host.
Our work analyzes the usefulness of a NIDS when a portion of the IPsec-encrypted packet is made
available to the NIDS, allowing the traffic to remain encrypted on a local network.

Other alternatives have been proposed when the IPsec endpoints are at the hosts and traffic
is encrypted throughout the network. In one commercial solution [30], each host has an IDS that
reports to a centralized server. While able to protect individual hosts against attacks, this approach
is not able to detect scans of invalid addresses or perform more than rudimentary packet-filtering
at the network firewall when the packets are encrypted in the network. There may also be a delay
before the centralized server detects subversion of a host. Another solution provides third parties
with a master key that can be used to examine the full contents of all packets [4,5]. Although we
leverage the idea of the master key, we feel that allowing access to the full packet contents would
unnecessarily provide too much information to network devices.

Our work uses Two-Key IPsec to provide a NIDS access to only required data in each packet.
Researchers have suggested using IPsec with multiple keys [10, 11, 31, 32] or with more data in
the clear [1,12] to support services on devices that are not at the endpoints of communication.
The focus of those publications, and derivative works [20,21], was largely to improve performance
of flows, not to increase the security of the system. When security is discussed, it is usually in
the context of packet-filtering firewalls. We examine the feasibility of using Two-Key IPsec by
examining the full Snort rule set.

Later in this work we argue that both network-based and host-based intrusion detection
systems are necessary to detect all types of attacks. This requirement is not a limitation of Snort,
but reflects the complementary nature of NIDSs and HIDSs [2,18,24,27,29]. A NIDS can be better
secured against compromise than can a HIDS. Thus, a NIDS is valuable for monitoring the health
of all the hosts within its purview. A NIDS can also handle certain network-level events better than
can a HIDS. Likewise, a HIDS can detect certain events, such as exploitation of applications, better
than a NIDS. Our analysis of the Snort rule set confirms this complementary nature of NIDSs and
HIDSs. In the case where both IPsec and intrusion detection are needed, we argue administrators
should use Two-Key IPsec to protect the traffic on the network in addition to protecting the hosts.

3. HOW SNORT RULES EXAMINE PACKETS

To understand what portion of the packet Snort examines, we need to understand how Snort
rules dictate what the Snort engine looks for when trying to detect suspicious traffic. Almost all of
the rules examine the header of the packet to determine the source and destination addresses and
ports. Snort rules can be divided into three categories based on the portion of the packet examined:
the packet headers (this includes IP, TCP, UDP, and ICMP headers), specific bytes in the packet
payload, or the entire payload of the packet.

Some Snort rules examine only the IP, TCP, UDP, or ICMP headers of packets. Any rules
that don’t use the Snort keywords content, pcre, byte_test, or byte_jump, examine only the
packet headers. The following rule provides an example of a rule that examines only the TCP
header.

alert tcp $EXTERNALNET 10101 -> $HOMENET any (msg:"SCAN myscan";
flow:stateless; ack:0; flags:S; ttl:>220;)

This rule looks for a TCP packet from an external address on port 10101 destined for any port on
any local machine. The packet also must have the ack value set to 0, the SYN flag set, and a TTL
greater than 220 for an alert to be generated.

Snort rules in the next category examine specific bytes within the packet. Rules that use
the modifier keywords depth, offset, within, or distance following the content keyword or use
the keywords byte_test or byte_jump, examine specific bytes in the packet payload. The content
keyword defines a string that Snort will try to find. For example, the rule

alert icmp $EXTERNALNET any -> $HOMENET any (msg:"ICMP PING speedera";
itype:8; content:"89|3A 3B|<=>7"; depth:100;)

looks for an incoming ICMP echo request (itype:8) with the string ¢ ‘89|3A 3B[<=>?’" in the
first 100 bytes of the payload (depth=100). In addition to the keyword depth that limits how far
into the packet to examine, the offset keyword defines how much of the packet to ignore before
looking for the pattern. Snort also provides two keywords to limit what portion of the packet should
be searched relative to the last content match. The keyword within defines how much of the packet
to examine after the last pattern match. The keyword distance defines how much of the packet
to skip before looking for the pattern. The keyword byte_test allows numerical comparison of
specific bytes relative to the start of the packet or the last match. For example,

alert udp $EXTERNALNET any -> $HOMENET any (msg:"RPC network-status-monitor
mon-callback request UDP"; content:"|00 03 OD|p"; depth:4; offset:12;
content:" |00 00 00 01|"; within:4; distance:4; byte_test:2,<,200,0,relative;)

examines an incoming UDP packet and looks for a string in the 12" to 16'" bytes of the packet.
If the first string is found, the rule ignores the next 4 bytes (distance=4) looks for a string in the

subsequent 4 bytes (within=4) and checks whether or not the two bytes following the last matched
string represent a number less than 200.

Snort rules typically examine the entire packet when trying to perform pattern matching. A
content keyword without any additional keywords will force Snort to search the entire packet in
order to find a match. In addition to the content keyword, Snort provides pcre to perform pattern
matching using Perl-compatible regular expressions. The keyword byte_jump can force Snort to
examine arbitrary bytes in the packet. The following rule examines the entire packet to search for
the string SSH-. If SSH- is found, Snort converts the subsequent 4 bytes into a value, skips that
many bytes, and uses a regular expression to check if there is not a carriage return in the next 200
bytes.

alert tcp $EXTERNAL NET 22 -> $HOMENET any (msg:"EXPLOIT SSH server banner
overflow"; content:"SSH-"; nocase;byte_jump:4,0,relative;
pcre:"/"SSH-\s["\n]200/ism" ;)

The letters ism after the / define compile time flags for the regular expression. The suffix i indicates
the rule is case insensitive, s tells the pattern-matching engine to include newline characters when
matching the dot metacharacter, and m changes how anchors such as * and $ are handled. Without
the m flag, * and $ limit the pattern matching to the beginning or end of the packet. When the m
flag is included, Snort will try to anchor patterns to newlines. The addition of the m flag to rules
with anchors forces Snort to search the entire string for possible matches, rather than just the first
or last few bytes of the packet.

4. TAXONOMY OF SNORT RULES BY EVENT TYPE

To determine whether Two-Key IPsec could preserve Snort’s capabilities, we analyzed the
registered user release of “VRT Certified Rules for Snort CURRENT” dated 2006-05-24, consisting
of 5089 rules. We found that roughly 3% of those Snort rules examine only the network-level and
transport-level headers when detecting suspicious events. Thus, in order to determine whether
there is any benefit to exposing the encrypted IP and transport header information using Two-Key
[Psec, a deeper inspection of the rule set is necessary.

For the analysis presented in this report, we omit consideration of the network configuration.
That is, we consider all possible rules, ignoring possible rule set reductions based on knowledge
of available operating systems, available network services, and software versions. In addition, we
don’t consider rule dependencies, those cases where multiple rules are linked to detect a single
suspicious event. For example, some Remote Procedure Call (RPC) attacks send a small number
of benign packets prior to a final exploit packet. To lower false positives without introducing false
negatives, Snort tracks both the benign and suspicious events through different rules and generates
an alert only when every rule is matched. We treat these as largely independent rules. Since such
event tracking is based on application-specific information associated with backdoors and trojans,
treating the rules as independent doesn’t impact the conclusions of our study.

The Snort rule set is subdivided into smaller, more manageable groupings. Most of the rule
groupings are based on the vulnerable protocol or service, for example, SMTP, FTP, or ICMP.
Some of the Snort rule groupings are based on the attack implementation, for example, backdoor
or virus. Other rule groupings are general, for example, misc, experimental, and local. Finally, a
subset of the Snort rule groupings is based on event type: bad traffic, scan, DoS, DDoS, exploit,
and policy violation.

For our more detailed analysis, we wanted a categorization based exclusively on event type.
To achieve that goal, we extended the event types defined by Snort as shown in Figure 2.

All Events
Bad Traffic Reconnaissance Policy Violations Attacks
Scans Application DoS Reflector Machine Hijacking
Level
Continuous Episodic Mail Relay XSS Detect Detect

Attacks Subverted

Traffic Amplification Machines

Figure 2. Taxonomy of Events of Interest to IDSs

There are four top-level categories in our taxonomy: bad traffic, reconnaissance, policy vi-
olation, and attacks. The taxonomy follows a tree structure in which children are more specific
instances of their parents with the most specific event types at the leaves.

Bad traffic represents IP packets that should not traverse a network. Examples of bad traffic
include invalid IP protocols; packets from the loopback address (127.0.0.1) or invalid addresses (e.g.,
0.0.0.0); and BGP packets with invalid formats. Such packets could indicate malicious activities or
misconfigured hosts.

Reconnaissance covers any type of information gathering. This category is subdivided by
the technique used: scans use network-level and transport-level probes of IP addresses and ports
while application-level reconnaissance utilizes knowledge of the application protocol. Scans
can use ICMP ping requests or use UDP or TCP scanning tools (e.g., cybercop or nmap). On
the other hand, application-level reconnaissance utilizes a wide range of tactics including querying
mail servers for address lists, invalid URLs sent to web servers, DNS zone transfer requests, finger
queries originating from outside of the network, and many other methods.

Policy violation consists of any types of activity which may not directly impact security, but
are disallowed by a company. Snort has rules to detect peer-to-peer (P2P) or filesharing programs,
the transfer of files, chat programs, and accessing inappropriate web content.

Attacks includes any action with a goal of subverting/hijacking a machine or disabling a
machine or network. We subdivide attacks into three categories. Actions that can result in a
machine or network being disabled are commonly referred to as Denial of Service (DoS) attacks.
We further divide DoS attacks into continuous DoS and episodic DoS attacks. Continuous DoS
attacks, such as network flooding attacks, require continued action to disable a service. Conversely,
episodic DoS attacks, such as the “ping of death,” use a small number of packets, perhaps as few
as one, to shut down a service.

The second category of attacks is reflector attacks. A reflector attack exploits one network
to attack another. We further divide reflector attacks into three categories: those where attackers
use the exploited network as a mail relay, a traffic amplifier (e.g., a Smurf attack), or as a place
to post malicious code (i.e., cross-site scripting (XSS) attacks). The defining feature of reflector
attacks is that the host network may suffer no damage, excluding wasted resources.

The last category of attacks is the traditional machine hijacking attack. For Snort, we
further divided this category into detecting the attacks and detecting evidence of subverted
machines. Examples of this type of attack are buffer overflow exploits and format string exploits.
Examples of evidence of machine subversion include active ports used by known backdoors or
spyware and suspicious activities, such as password modification or root log ins, from hosts outside
of the network.

10

5. ANALYSIS OF SNORT RULES

5.1 PORTION OF THE PACKET EXAMINED BY EVENT TYPE

Table 1 indicates the total number of rules and the number and percentage of rules that
examine the entire packet and that examine only the packet headers, for each event type in our
taxonomy. Fifty of the Snort rules are excluded from the results in the table since they are used
to track the initiation status for TLS/SSL connections. Those rules do not generate alerts and are
used to set flags that are subsequently checked by multiple rules in the episodic DoS and detect
hijack attack categories. The majority of rules that detect application-level reconnaissance, episodic
DoS, reflector attacks, machine hijack attacks, and subverted machines need access to the entire
packet to accurately detect the various events. However, fewer than 10% of the rules for detecting
bad traffic, scans, and continuous DoS events examine the entire packet. In addition, Snort may
be configured to use a preprocessor to detect a larger range of scans. This preprocessor uses only
information in the IP and TCP/UDP headers to detect scans. These are positive results, given
that bad traffic and scans are network-level events that HIDSs may miss. This analysis indicates
that Snort, and by extension other NIDSs, can provide a necessary service without forcing clients
to expose the entire contents of the packet to a network service.

Event Type # of | #(%) Examine | #(%) Examine

Rules Entire Packet Only Headers
Bad Traffic) 7(8.8%) 70(88%)
Scans 83 8(9.6%) 42(50%)
Application Reconn. 464 368(79%) 13(2.8%)
Continuous DoS 5 0(0%) 2(40%)
Episodic DoS 132 104(79%) 14(11%)

Reflector Attacks 21 20(95%) 0(0%)

Detect Hijack Attack | 3400 | 3251(96%) 63(1.8%)
Subverted Machines 742 630(85%) 9(1.2%)
Policy Violation 112 72(64%) 4(3.5%)

TABLE 1. Taxonomy Statistics

While Table 1 shows that the majority of bad traffic, scans, and continuous DoS events are
detectable without examining the entire packet, it does not convey how little of the packet actually
needs to be exposed. Figure 3 shows histograms of the number of bad traffic, scan, and continuous
DoS rules that examine each byte of the IP packet. Each histogram shows the results for Snort
rules based on a specific IP protocol: ICMP, UDP, or TCP. The 9 bad traffic and 2 scan rules
that use IP headers only are included in the counts in Table 1 but not in the histograms. In the
histograms, only byte indices up to 200 are shown. For these plots, rules that examine more than
200 bytes examine the entire packet.

For the plots in Figure 3 we assume there are no IP or TCP options, i.e., the IP header is

11

headers: IP ICMP
70

Bad Traffic
Scans
60 k. Cont. DoS -]

50 1

40 | j

=\

20 1

of rules that look at a byte

0 L L . L N L L " L
20 40 60 80 100 120 140 160 180 200

byte index (packet byte #)
a) Histogram of the 54 Bad Traffic, 59 Scan, and 2 Cont. DoS ICMP Rules

headers: IP UDP

Bad Traffic
Scans ---------
& B F 1
B
o
© i
S 6t : 1
8 é
. i
0 4 + i 4
2 i
2 -
5 :
* o b H
0 " i ; i i i 1 i

20 40 60 80 100 120 140 160 180 200
byte index (packet byte #)

b) Histogram of the 3 Bad Traffic and 7 Scan UDP Rules

headers: IP TCP

20 T T T T T —
Bad Traffic
Scans
Cont. DoS -
£ 15 |
o
@©
©
x
§ 1
5 100 T
£
172}
k)
= i
&] | | l
o 5 [
e 5

n n L L L

60 80 100 120 140 160 180 200
byte index (packet byte #)

¢) Histogram of the 14 Bad Traffic, 15 Scan, and 3 Cont. DoS TCP Rules

Figure 3. Histogram of How Many Rules in Each of 3 Categories Examine Each Byte in a Packet

12

from byte 0 to byte 19 and the TCP header is from bytes 20 to 39. Each plot has vertical lines to
define where one header ends and the next header or the packet’s contents begin. For example, in
Figure 3a the solid line representing bad traffic indicates 54 rules examine bytes 0 through 23 (the
IP and ICMP headers), and 0 rules examine any bytes past the ICMP header (a value of 0 for any
byte index > 23).

A network designer could configure Two-Key IPsec to encrypt only the IP and ICMP /UDP/TCP
headers of packets using the shared key. In that case, the 217 Snort rules included in the fourth
column of Table 1 and depicted as using only header information in the histograms in Figure 3
could be used by a NIDS with access to the shared key. In addition, the histograms show that the
majority of the remaining bad traffic, scan, and continuous DoS rules examine fewer than 60 bytes
at the beginning of the packet. For example, the ICMP rule

alert icmp $EXTERNALNET any — $HOME NET any (msg:"ICMP PING Microsoft Windows";
itype:8; content:"0123456789abcdefghijklmnop"; depth:32; reference:arachnids,159;
classtype:misc-activity; sid:376; rev:7;)

examines only the first 56 bytes of an ICMP packet (24 bytes for the IP and ICMP headers and 32
bytes of the ICMP payload) to detect an IP address scan. First, the rule checks that the packet
is an ICMP echo request (itype:8), commonly referred to as a ping request. It then categorizes
the originator as a machine running Microsoft Windows by examining up to 32 bytes (depth:32)
of content for the string "0123456789abcdefghijklmnop".

Of the 38 ICMP rules that examine the packet contents, all are scan rules and all but one
are checking ICMP echo request and reply messages. That one rule checks the first 22 bytes of
the ICMP payload, of all ICMP packets originating outside the local network, for a Digital Island
bandwidth query. A HIDS can detect this event and prevent the host from responding. It may also
be possible to develop a rule that checks for ICMP request messages.

For the remaining 37 ICMP scan rules, we observe that ICMP echo request and reply messages
should not be carrying sensitive information. In that case, Two-Key IPsec can be used to encrypt
the full ICMP payload, as well as the header information, with the shared key. The NIDS will then
have full access to the ICMP packet and will retain its original fidelity and false-alarm rate.

Even if Two-Key IPsec is used to encrypt only the first 56 bytes of all ICMP echo request and
reply messages using the shared key, all but six of the rules in Figure 3a can be used by the NIDS.
Further, if decrypting the ICMP payload is unacceptable, then the NIDS could use a single rule
to detect ICMP echo request and reply messages, instead of using 37 separate rules. Although the
fidelity may be lower and false alarms greater, such a rule would require use of only IP and ICMP
header information and would give a NIDS using Two-Key IPsec nearly full coverage of ICMP rules
for bad traffic, scans, and continuous DoS events.

Coverage by the TCP and UDP rule sets could also be improved if additional bytes in the
packets are made available to a NIDS using a shared key. Unfortunately, since UDP and TCP
payloads are likely to contain information that should remain confidential, it is not practical to
enable use of those types of rules using the Two-Key IPsec approach. We examine whether these
TCP and UDP rules can be rewritten to allow the NIDS to operate later in this section.

13

Even if Two-Key IPsec were to be used to give the NIDS access to the beginning of UDP and
TCP packets and full access to ICMP ping packets, 7 bad traffic and 4 scan rules that examine the
entire packet remain. Of those bad traffic rules, two detect spoofed DNS responses, one detects
invalid BGP messages, two detect malformed NetBIOS requests, one detects a malformed rlogin
message, and one detects a NIDS evasion technique used when attacking web servers. Of the four
scan rules, one looks for Distributed DoS (DDoS) communication between a client and its master
hosts, another looks for a UDP probe containing a specific string, and two look for trojan activity. A
HIDS, particularly one that operates at or below the transport layer, can detect all of these events
and protect targeted applications. In the case of the DDoS communication and trojan activity,
if the host has been compromised, there is a strong chance the HIDS has been disabled. In the
next subsection, we look at whether these three DDoS and trojan activity detection rules can be
rewritten to allow detection by a NIDS.

headers: IP TCP

100 f : ; ! : Epi'sodic Dos
2 =80t
fel
©
©
= 60
38
T
£
8 40t
2
i)
*

20 +

0

20 40 60 80 100 120 140 160 180 200
byte index (packet byte #)

Figure 4. Histogram of the 104 Episodic DoS TCP Rules

In contrast to Figures 3a-c, Figure 4 shows the bytes examined by the episodic DoS rules for
TCP traffic. For a NIDS to detect the majority of episodic DoS activities, a large portion of the
packet must be exposed. Thus, most episodic DoS attacks are best detected by a HIDS.

We next look at whether it is possible to increase the effectiveness of the NIDS by rewriting
some of the rules to require access to less of the packet.

5.2 WHETHER SIGNATURES NEED TO SEARCH THE ENTIRE PACKET

We showed in Table 1 that Snort searches the entire packet when detecting the majority of
application-level reconnaissance, episodic DoS, reflector attacks, machine hijack attacks, subverted
machines, and policy violation events. However, it was not clear whether Snort rules must search
the entire packet. We wanted to determine whether designers could rewrite the Snort rules to

14

examine less of the packet and thereby make the rules usable by a NIDS using Two-Key [Psec. We
examined the rules with two specific goals. The first goal was to increase the number of UDP and
TCP rules available to the NIDS for detecting bad traffic, scan, and continuous DoS events. The
second goal was to make the large number of rules for detecting machine hijack attacks targeting
web, mail, and Remote Procedure Call (RPC) servers available to the NIDS.

To accomplish the first goal, we examined the characteristics of the 9 UDP rules and 20
TCP rules that access the packet payload. Of those, 12 rules can be attributed to network or host
compromise, 4 to network reconnaissance with no compromise, and the remaining 13 to attacks
against various application services. A HIDS, particularly one like Snort that operates below the
network layer, is well-suited to protecting application services so we focused our efforts on the 16
rules we would like a NIDS to be able to implement.

The rule used to detect a DDoS client searching for its master is

alert udp $EXTERNAL NET any — $HOMENET 31335 (msg:"DDOS TrinOO Daemon to Master
PONG message detected"; content:"PONG"; reference:arachnids,187;
classtype:attempted-recon; sid:223; rev:3;)

This rule is looking for a UDP packet destined for port 31335 on a local host and containing the
string "PONG" anywhere in the payload. Although this rule cannot be rewritten to provide the
same functionality without accessing the payload, a rule could be written for the NIDS to report
on suspicious activity on UDP port 31335. Since this port is widely known to be used by Trin00,
it should be blocked in the network. Thus, providing the NIDS with access to the IP and UDP
headers will allow it to detect and respond to evidence of active Trin00 DDoS software.

We did a similar analysis of the other 15 rules. Of those rules, 10 use a characteristic port
that could be used for detection at the risk of increasing the rate of false alarms. The false-alarm
rate could potentially be reduced by adding checks for packet size, requiring repeated detections
for alerting, and adding checks for preconditions. However, we leave analysis of the false-alarm rate
for future work.

Three of the remaining five rules are used for detecting Cybercop scans. For example,

alert tcp $EXTERNALNET any — $HOMENET any (msg:"SCAN cybercop os PA12 attempt";
flow:stateless; flags:PA12; content:"AAAAAAAAAAAAAAAA"; depth:16; sid:626;
rev:8;)

examines the first 56 bytes of a TCP packet (40 bytes for the IP and TCP headers plus 16 bytes
of payload) to detect a scan. First the rule checks if the Push, Ack, and first and second reserved
bits (PA12) of the packet are set. If those bits are set, the additional 16 bytes are examined to
identify the scanning tool. The other two Cybercop scan rules are similar except one checks for
flags:SFU12 (Synchronize, Finish, Urgent, and the two reserved bits are set) and the other
checks for flags:SFP. Cybercop uses these flags to fingerprint the OS of the target machine. Since
the content check is used for identifying the scan tool, that check can be omitted. A higher false-
alarm rate is only likely to occur if Explicit Congestion Notification (ECN) is enabled, since ECN
uses the first and second reserved bits. In that case, the flags:PA12 rule should be removed from
the active rule set.

The remaining two rules rely exclusively on the packet payload contents for detection and
cannot be rewritten and still remain effective. The first is a scan rule that examines the entire
packet to detect an attempt to contact the FsSniffer trojan running on a compromised host:

alert tcp $HOMENET any — $EXTERNAL NET any (msg:"BACKDOOR FsSniffer connection
attempt"; flow:to_server,established; content:"RemoteNC Control Password|3A|";
reference:nessus,11854; classtype:trojan-activity; sid:2271; rev:2;)

Since this rule cannot be rewritten to be usable by a NIDS using Two-Key IPsec, it must be used
by a HIDS. Since the rule is checking for an outgoing connection, the HIDS can effectively detect
the event, unless the HIDS has been disabled.

The second rule that relies exclusively on the packet payload for detection is a bad traffic
rule. It examines the first 46 bytes of the packet (the IP and TCP headers plus 6 bytes of the TCP
payload) to determine if the SecureNetPro IDS is running on the network:

alert tcp $EXTERNAL NET any — $HOMENET any (msg:"OTHER-IDS SecureNetPro
traffic"; flow:established; content:"|00|g|00 01 00 03|"; depth:6;
classtype:bad-unknown; sid:1629; rev:6;)

This rule detects 16 bits of 0’s followed by "g" followed by the integer value 1 and the integer value
3 in the packet payload. This rule cannot be rewritten to be usable by a NIDS using Two-Key
IPsec. It is, therefore, effective only if used by a HIDS running on the host running SecureNetPro.
As with the previous rule, the HIDS can effectively detect the event, unless the HIDS has been
disabled.

We have established that, by rewriting some of the bad traffic and scan rules, we are able to
achieve our first goal and increase the number of rules available for use by a NIDS using Two-Key
IPsec, albeit with more false alarms. In addition, we have established that rules that cannot be
used by the NIDS can be implemented in the HIDS with no loss of coverage.

Our second goal was to enable the NIDS to use a more significant percentage of the large
number of rules for detecting machine hijack attacks. We examined several servers to determine if
attackers can move exploit-identifying data to arbitrary positions in the packet. Our testing found
that popular web and mail servers will accept a wide range of inputs that permit attackers to move
exploit code to an arbitrary position in the packet. We found Apache (v1.3.31, v2.0.52, and v2.0.54)
and Microsoft Internet Information Server (IIS) (v5 and v6) web servers permit an arbitrary number
of spaces between an HTTP method (e.g., GET) and the associated filename (e.g., index.html) or
the use of arbitrarily long relative paths (e.g., ./././././). We also found that SendMail (v8.11.7
and v8.12.10), PostFix (v10.3), and Exchange (v5 and v6) are not strict about accepting suspicious
inputs. Both PostFix and SendMail permit an arbitrary number of spaces before commands (e.g.,
HELO, FROM, etc.). All three mail servers permit multiple commands in a single packet, allowing
attackers to send benign commands prior to malicious ones, and arbitrary spaces between commands
and parameters, allowing attackers to simply move the malicious parameters deeper into the packet.
Thus, rules associated with these services must be written to examine the entire packet.

Our analysis of the Microsoft Windows Distributed COM (DCOM) RPC service shows it
is much stricter than the mail and web servers. The DCOM RPC service accepts input only in

16

a specific format, even before the vulnerability associated with the Blaster [25] and Welchia [26]
worms is patched. The DCOM RPC service rejects any packet in which header fields have been
manipulated in order to move parameters deeper into the packet. Thus, designers could rewrite
rules related to the Windows DCOM RPC vulnerability to examine less of the packet since the
malicious data is limited to a specific region.

In general, the vulnerable service dictates whether or not an attacker can move attack code
within the packet. As long as some services permit the movement of attack code, Snort rules
associated with those services must search the entire packet and the IDS must access the entire
packet. Thus, HIDS must be used to detect machine hijack attempts targeted at servers.

L7

